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1　Introduction
Many problems in science and engineering involve moving 

boundaries. Some well-known examples include fluid-
structure interaction[1] , dendritic solidification[2], and crack 
propagation[3]. Numerical treatment of such problems 
requires solving partial differential equations (PDEs) on 
moving domains with boundary conditions on unknown and 
moving sharp interfaces, which poses a considerable 
challenge[4, 5]. Phase-field modeling has gained popularity 
within the computational mechanics community as a 
powerful tool to address the difficulties associated with 
solving interface problems. Phase-field methods are based on 
reformulating the moving boundary problem using a 
continuous, smooth scalar variable that ranges between two 

values associated to the phases in the problem (e.g., 0 in one 
side of the interface and 1 in the other). The smooth variation 
of the scalar field, known as the phase-field variable or order 
parameter, effectively replaces the sharp interface with a 
diffuse transition zone and defines a scalar PDE over the 
whole domain (see Fig. 1)[6]. In consequence, the sharp 
interface does not have to be tracked anymore and emerges 
naturally from the transition from one phase to the other, 
given by the scalar field solution of the new PDE.

Fig. 1 Sketch of a two-phase domain marked by the scalar 
phase-field variable ϕ. The value of the ϕ for the 
outer and inner phase is zero and one, respectively. 
The transition between the two phases happens 
smoothly over the diffuse interface.

In recent years, the phase-field method has been used to 
model  in terface  problems in  sof t  mat ter,  such as 
biomembrane[7, 8] and fracture mechanics[9-11], avascular and 
vascular tumor growth[12, 13], embryonic development[14], and 
interactive biological networks[15].

From the continuum mechanics point of view, the motion 
of a deformable body can be described using two different 
frameworks: the Lagrangian framework and the Eulerian 
framework. Engineers and scientists use the Lagrangian 
framework to simulate the deformation of solids, due to a 
reference framework and the explicit tracking of material 
particle motion. However, this feature can lead to severe 
mesh distortions when the Lagrangian approach is employed 
in simulations involving large deformations. Such large 
deformations are inherent in various applications, specifically 
those that involve fluid-structure interactions and soft 
biological materials. A suitable alternative is to use a Eulerian 
framework, common in fluid mechanics, which uses a fixed 
grid and does not explicitly track the motion of the particles. 
The conversion is far from trivial due to the loss of the 
reference configuration, which is fundamental in the 
constitutive equations of solids, with the elastic behavior 
being a prominent example. Different approaches have been 
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scheme and the interface treatment. For example, a 
combination of RMT with a finite volume-based method is 
presented in [20]. In this study, we present a novel approach 
to integrate the RMT in large deformation Eulerian elasticity 
with a phase-field based interface treatment, and we solve it 
with a finite element method (FEM) approximation. The 
structure of this paper is as follows: in Section 2, we define 
the governing equations that include the reference map's 
evolution equations, the phase-field modified balance of mass 
and balance of linear momentum, and the derivation of the 
weak forms needed for the FEM implementation. We then 
dedicate Section 3 to numerical examples that illustrate the 
performance of our formulation. We give our concluding 
remarks and future lines of work in Section 4.

2　Governing Equations
We start by defining an Eulerian vector field called the 

reference map ξ(x, t) , which initial state coincides with the 
reference configuration of a domain Ω . The evolution of 
ξ(x, t)  is defined as:   
∂ξ (x, t)
∂t

+ (∇ξ) v = 0,
 

(1)

ξ (x, t)|t=0 = x = X,  (2)
where x  and X  indicate the location of a material point in the 
current and in the reference configuration, respectively.
Equation (1) along with the initial condition defined in Eq. (2) 
imply that the reference map ξ(x, t)  never changes due to the 
velocity field, therefore, ξ(x, t)  points to the location from 
which the material point currently at x  originally started. 
Furthermore, for a line element in the reference configuration 
we can write:

dX = (∇ξ) dx,  (3)
therefore,
F = (∇ξ)−1,  (4)

where ∇  here indicates the gradient with respect to the current 
configuration, and F  is the deformation gradient tensor.

We then use the phase field φ  to indicate the solid region ( φ 
= 1) and the region outside the solid (φ = 0). The evolution of 

proposed to activate Eulerian framework’ s advantages in the 
description of solid and fluid interface problems. One method 
that aims to benefit from the advantages of both Lagrangian 
and pure Eulerian descriptions is the Arbitrary Lagrangian-
Eulerian (ALE) formulation[16]. The ALE method optimizes 
the shape of the mesh elements by allowing for the arbitrary 
movement of the mesh inside the domain while tying the 
boundary and interface meshes to the material points. 
Nevertheless, ALE is a mesh conforming method, and the 
development of the solid mesh interface is not straight-
forward. Moreover, depending on the severity of the 
deformations, remeshing of the domain may still be required. 
A reasonable strategy is to use fully Eulerian framework 
approaches, which are nonconforming, and thus eliminate the 
remeshing problem and are amenable to large scale 
simulations. However, these methods must elaborate 
formulations to correctly estimate the stress state of the solid 
portions of the domain due to the lack of a reference 
framework. A conventional approach is the advection of the 
strain and stress tensors over time, which typically leads to 
numerical dissipation and inaccuracies close to the interface. 
A Eulerian finite volume formulation that uses Lagrangian 
marker particles to compute the solid constitutive behavior 
has been recently presented[17]. An alternative to the 
advection of the conventional tensors is to use a fully 
Eulerian technique called the reference map technique 
(RMT). This methodology was introduced and developed in 
[18] to address the difficulties associated with conventional 
Eulerian solid mechanics. The RMT defines an Eulerian 
mapping from the deformed configuration to the reference 
configuration (see Fig. 2). The evolution of this reference 
map field is then calculated by setting its Eulerian material 
time derivative equal to zero. The reference map's evolution 
equation is supplemented with the specific initial condition 
defined in the next section. The equations of RMT imply that 
the reference map tracks the material points back to the 
reference configuration during the deformation, enabling us 
to accurately recover the deformation gradient tensor and, as 
a  result ,  calculate the sol id deformations without 
approximations. The RMT proves to be especially effective 
in fluid-structure interaction problems by allowing one or 
more deformable bodies to interact with themselves and the 
background fluid[19].

On the numerical side, the RMT has been mostly 
implemented using the finite differences for solving the 
PDEs, and a level set approach to distinguish the phases (i.e., 
solid and fluid) of the domain. Both the volume conservation 
for finite difference schemes and the lack of physics 
associated to the interface in level set methods present 
substantial obstacles to its implementation in engineering 
schemes. As a response, several efforts have been recently 
put into combining the simplicity of the RMT with other 
numerical schemes that improve on the approximation 

 

   
 

Fig. 2 A material point is mapped from the deformed 
configuration Bt to the reference configuration B via the 
reference map ξ(x, t). Position vectors X and x mark the 
location of the material point, relative to the coordinate 
system, in the reference and the deformed 
configurations, respectively.
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deviatoric part of B , the left Cauchy-Green deformation tensor, 
and I is the second-order identity tensor. Note that the left 
Cauchy-Green deformation tensor B  can be written in terms of 
ξ  as follows:

B = FF� = (∇ξ)−1(∇ξ)−�.  (16)
To construct the weak from, we define the space of trial 

solutions as:

U =
�
φ, ρ ∈ H1 (Ω) | φ = φg on ∂ΩD

�
,
 (17)

S =
�
v, ξ ∈ H1 (Ω) | v = vg on ∂ΩD

�
,
 

(18)

and the space of test functions as:

V =
�
wφ,wρ ∈ H1 (Ω) | wφ = 0 on ∂ΩD

�
,
 

(19)

W =
�
wv,wξ ∈ H1 (Ω) | wv = 0 on ∂ΩD

�
,  

(20)

where ∂ΩD  is the Dirichlet boundary. Then the weak form 
becomes: Given φg  and vg , find φ , ρ  ∈  U and v , ξ  ∈  S , 
such that for all wφ , wρ  ∈  V  and for all wv , wξ ∈  W :
�

Ω

wφ

�
∂φ

∂t
+ ∇φ · v

�
dΩ = L�2

�

Ω

∇wφ · ∇φ dΩ

−L�2
�

Ω

wφ
�
4φ2 − 6φ + 2

�
φ dΩ,

 (21)



Ω

wρH (φ) ρ dΩ −


Ω

wρJ−1ρ0 dΩ = 0,  (22)

�

Ω

ρ
�
∂v
∂t
+ H (φ) (∇v) v

�
· wv dΩ

=



Ω

H (φ)σ : ∇wv dΩ +


Ω

H(φ)ρb · wv dΩ,  
(23)



Ω

∂tξ · wξ dΩ +


Ω

(∇ξ) v · wξ dΩ = 0,
 

(24)

with 

σ = GJ−5/3dev
�
(∇ξ)−1(∇ξ)−�

�
+ κ (J − 1) I,

 
(25)

ξ (x, t)|t=0 = x = X.
 

(26)

Note that in the second line of Eqs. (21) and (23), we have 
made use of the integration-by-parts along with the 
divergence theorem. Moreover, with the definitions of the test 
functions given in Eqs. (19) and (20), the boundary terms 
resulting from the application of the divergence theorem 
vanish.

3　Numerical Examples
We implement the weak form defined in Eqs. (21) to (24) 

in MOOSE (Multiphysics Object-Oriented Simulation 
Environment)[22], which is our FEM implementation of 
choice. MOOSE is an open-source finite element solver 
package developed primarily at the Idaho National 
Laboratory that uses PETSc[23, 24] for efficient, robust 
parallelization.

For all the examples shown in this section, we set 
 = 1×10−4  and L = 1 . Moreover, we choose the material 
properties, G  and κ  (corresponding to shear and bulk moduli, 
respectively, in small strain regime), in such a way that the 

the phase-field is as follows:
∂φ

∂t
+ ∇φ · v = −L

δΨ (φ,∇φ)
δφ

,
 

(5)

where v  is the velocity field vector and L  is the mobility. 
Moreover, Ψ is the phase-field free energy functional which 
we define as:

Ψ (φ,∇φ) =


Ω

(I +W) dΩ,
 

(6)

I =
1
2
�2|∇φ|2,  

(7)

W = φ2 (1 − φ)2 .  
(8)

In Eqs. (6) to (8), I  corresponds to the interfacial energy and 
W  is a symmetric double-well. Also,   is a small length scale 
proportional to the width of the diffuse interface. Taking the 
first variation of the free energy potential Ψ with respect to the 
phase field φ  yields:
δΨ (φ,∇φ)
δφ

= φ
�
4φ2 − 6φ + 2

�
− �2∆φ,

 
(9)

where ∆ indicates the Laplacian operator. Therefore, Eq. (5) 
can be re-written as:
∂φ

∂t
+ ∇φ · v = L

�
�2∆φ − φ

�
4φ2 − 6φ + 2

��
.
 

(10)

We then write the phase field modified balance of mass 
and the balance of linear momentum in the Eulerian 
framework as:

H (φ) ρ − J−1ρ0 = 0,
 

(11)

∇ · (H (φ)σ) + H (φ) ρb = ρ
�
∂v
∂t
+ H (φ) (∇v) v

�
,

 
(12)

where ρ  and ρ0 are the current and the initial mass densities, and 
σ  is the Cauchy stress. H (φ) is a smooth Heaviside function of 
the phase field that localizes the mass density and the stress for the 
solid and is defined as:

H (φ) =
1
2

�
tanh
�
φ − a

b

�
+ 1
�
,
 

(13)

where a  and b  are constants that control the transition point 
and the slope of the transition zone, respectively. One can 
observe that the values of Eq. (13) vary between 0 and 1 for 
all the values of phase-field φ . Moreover, ∇·  in Eq. (12) 
indicates the divergence calculated with respect to the current 
configuration. Also, indicating the determinant of a tensor A
with detA , we define J  as:

J = detF = det
�
(∇ξ)−1

�
.
 

(14)

Since the deformation gradient tensor F can be described using 
the reference map ξ(xt) , we are able to model the constitutive 
response of the large-deformation, thermodynamically consistent 
solid laws in the Eulerian framework[21]. For this study, we choose 
the constitutive model to be a compressible neo-Hookean elastic 
solid, in which the Cauchy stress σ  is defined as:
σ = GJ−5/3dev (B) + κ (J − 1) I.  (15)

In Eq. (15), G  and κ  are material properties, dev (B)  is the 
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material properties to the previous example and stretch it 
from both sides. The stretch is applied equally at both ends of 
the bar using a localized velocity field. We demonstrate the 
results of this second uniaxial stretch test in Fig. 5 in which 
the undeformed and deformed configurations are shown in 
Fig. 5a and 5b, respectively. We see in Fig. 3b that, matching 
again the results that MOOSE attains with the regular 
Lagrangian approach,  the elongation of the bar is 
accompanied by the necking in the middle.

Fig. 5 Deformation of a bar under uniaxial stretch. (a) Is the 
initial shape and (b) shows the deformed shape. The 
bar is stretched at both ends using equal localized 
velocity fields.

3.2　Uniform Loading Bending 
In this section we report the results from the deflection 

simulation of a clamped beam subjected to its own weight. 
The beam is fixed at both ends using the same methodology 
explained in the previous section. The weight is applied to 
the beam as a uniform vector field in the vertical direction 
and enters the balance of linear momentum equation (see Eq. 
(12)) as ρb , where ρ  is the beam’ s mass density per unit 
volume and b  is the gravity vector field. We use a higher 
mass density for this example ( ρ = 10 kg/m3 ), compared to 
the previous examples, to create an exaggerated deformation 
under self-weight. Figure 6a shows the initial undeformed 
shape and Fig. 6b shows the final deformed shape of the fixed 
beam. The deformed shape clearly shows the expected 
behavior of a fixed beam under uniformly distributed load 
(self-weight), with zero slopes at the fixed ends and in the 
middle, and maximum deflection in the middle of the beam. 

Fig. 6 Deformation of a fixed beam under uniformly 
distributed load, i.e., self-weight. (a) Is the initial 
shape and (b) shows the deformed shape.

3.3　Advanced Responses I: Stretch and Release
This section demonstrates a more dynamic example than 

resulting behavior resembles that of a rubber-like material with 
very limited compressibility, more specifically, G << κ [25].  
We use Newton-Raphson method as a nonlinear solver, and a 
standard second order backward difference formula (BDF2) as 
the time marching algorithm. We utilize the standard linear 
Lagrange shape functions with the corresponding QUAD4 
elements. We also take advantage of the adaptive meshing 
capabilities in MOOSE for refining the mesh in the phase-field 
diffuse interface region (see Fig. 3), as well as adaptive time 
stepping scheme with the initial time step of ∆t = 5×10−5 s .

Fig. 3 Adaptive mesh is used to make sure that the diffuse 
interface is well-resolved without making the entire 
mesh unnecessarily dense.

3.1　Uniaxial Stretch
In the first set of examples, shown in Fig. 2 and Fig. 3, we 

use a unit mass density and apply a uniaxial stretch to a bar 
(represented with the phase-field φ ) in two different settings. 
In the first setting, we fix the bar on one end and apply the 
stretch to the bar’ s right side. Figures 4a and 4b show the 
initial and the deformed configurations, respectively. 
Numerically, it is straight-forward to fix the bar by letting the 
bar extend past the left boundary. Note that vg = 0 at the 
boundaries. We then apply the nontrivial stretch condition at 
the right end of the bar by using a localized uniform velocity 
field. We observe that, as expected, the bar elongates in the 
direction of the applied stretch accompanied by thinning in 
the lateral direction, matching the result of conventional 
Lagrangian scheme (see Fig. 4b).

Fig. 4 Deformation of a bar under uniaxial stretch. (a) Is the 
initial shape and (b) shows the deformed shape. The 
bar is fixed at the left end while being stretched at 
the right end using a localized velocity field.

In a second setting, we repeat the uniaxial stretch test in a 
different scenario. In this case, we take a bar with identical 
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the previous ones. Similar to example 2 of section 3.1 (see 
Fig. 5), we apply two equal and opposite constant velocity 
fields to the left and the right side of the circle shown in Fig. 
7. Furthermore, in order to generate a more dynamic 
response, we only apply the velocity fields for a limited time 
from the initial time step ( t = 0.2 s ), after which we release 
the stretched circle by setting the velocities equal to zero. 
Figure 7 illustrates the process of stretch and release of the 
circle in time. As expected, after the release (see Fig. 7, 
second image from the left), the circle gets contracted in the 
direction that the stretch was applied and eventually relaxes 
into its initial configuration. 

3.4　Advanced Responses II: Bouncing Ball
In this final example, we demonstrate the dynamics of the 

contact of a circular rubber-like solid with the boundary. For 
this purpose, we simulate a free fall by placing the solid in 
the middle of the domain and letting gravity be the only force 
applied to the solid. Note that the velocity is equal to zero at 
the boundaries. Figure 8 shows the dynamics of the circular 
solid before, during, and after contact with the boundary.  

Fig. 7 Deformation of a circular solid domain due to stretch 
and release. The time increases in the direction of 
the arrow. From left to right: initial configuration, 
stretched configuration at t=0.2 s, contracted shape 
after the release, and final relaxed configuration.

As expected, the circular solid gains momentum due to 
gravity and hits the bottom boundary where the velocities are 
prescribed as zero. It then bounces off the surface after 
undergoing a large deformation and finally comes to its final 
stable configuration. One can see from the figure that during 
this dynamic large deformation simulation, the mass of the 
circular solid is conserved, and the profile of the phase-field, 
indicated by the black line, is preserved throughout the 
evolution in time.

4　Conclusions 
We have presented a phase-field modified hyper-elastic 

model in a pure Eulerian framework which integrates the 
RMT to recover the deformation gradient tensor. We have 
developed here for the first time the coupled PDEs that 
govern the balance laws of a phase-field reference map 
formulation. We then derived the variational form of the 
equations required for the FEM implementation of the PDEs. 
We have shown, through several examples, our formulation's 

capabilities and potential in different scenarios. We expect 
this work to contribute to the simulation of complex fluid-
solid soft matter ensembles that require physical accuracy 
and control of the interfaces. In particular, we highlight that 
the overall mass of the solid during all the examples is 
conserved. Furthermore, since the material model is nearly 
incompressible ( G << κ ), the Jacobian of the deformation 
J should always stay approximately equal to one, which is 
also confirmed during our investigation. We would also like 
to point out that in the dynamic examples shown in sections 
3.3 and 3.4,  the final relaxed configuration is  the 
configuration at the final time step of our simulations and not 
the steady-state solution. This is due to the fact that we do 
not require any dissipation mechanism in our formulations. 
The dissipation can be introduced, for instance, with the 
simple addition of a background viscous fluid, which will be 
a subject of a later study.

Fig. 8 Deformation of a circular solid domain due to the 
contact with the surface. The time increases in the 
direction of the arrow. From left to right: initial 
configuration, deformation due to the contact with 
the surface, bouncing off the surface, and final 
relaxed configuration.

Finally, we note that no special treatment was done to 
ensure the numerical stability of our solutions. This 
interesting feature is owing to the fact that we kept the 
velocity magnitudes of our simulations relatively small to 
avoid advection dominance. However, the implementation of 
stabilization methods such as streamline upwind Petrov-
Galerkin stabilization method (SUPG) is straightforward and 
will be explored in the application of this method to more 
extreme dynamical events.
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